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Work has been carried out on the problems of run-up and spin-up in a visco-
elastic fluid. Three simple problems have been considered. These are: (i) The
fluid is confined between two infinite rigid parallel plates. These are simul-
taneously and instantaneously given equal velocities, vhich are then maintained
constant. The resulting velocity field of the fluid is calculated as a function
of time. (ii) The fluid is contained in a rigid circular cylinder of infinite
length. At some instant the cylinder is aiven a longitudinal velocity which is
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subsequently held constant. The resulting velocity field in the fluid is
calculated as a function of time. (iii) The rigid containing cylinder is, at
some instant, civen an angular velocity which is subsequently held constant.
The resulting angular velocity field in the fluid is calculated.
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PROGRESS REPORT

Work has been carried out on the problems of run-up and
spin-up in a viscoelastic fluid. Three simple problems have been

considered. These are:

(i) The fluid is confined between two infinite rigid
parallel plates. These are simultaneously and instan-
taneously given equal velocities, which are then main-
tained constant. The resulting velocity field of the
fluid is calculated as a function of time.

(ii) The fluid is contained in a rigid circular cylinder of
infinite length. At some instant the cylinder is given
a longitudinal velocity which is subsequently held con-
stant. The resulting velocity field in the fluid is
calculated as a function of time.

(iii) The rigid containing cylinder is, at some instant,
given an angular velocity which is subsequently held
constant. The resulting angular velocity field in the

fluid is calculated.

The results obtained on these three problems are contained
in three papers [1,2,3].
In all of these papers, the fluid is considered to be 'iso-

tropic and incompressible and the constitutive assumption is made

that in time-dependent simple shearing flows, the shear stress o,
measured at time t , depends linearly on the history «(t)

(-» <t < t) of the velocity gradient, thus:

t
g = I £(t-t)x(t)dT . 1) h
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e = e <

For a fluid which has N relaxation times f(t-r) is given by

-(t-t)/A,

N
£(t-1) = ng8(t-7) + ] oLe , (2)
n

n=1
where the n's and A's are positive constants and &8( ) 1is
the Dirac delta function. If the fluid has instantaneous elas-
tic response, Ny = 0.

The character of the run-up or spin-up behavior depends
significantly on whether the fluid does or does not have instan-
taneous elastic response, i.e. on whether Ny = 0 or N, $#0.
However, the behavior in the former case may be regarded as a
limiting case of that in the latter.

The procedure adopted in analyzing each of the problems
considered is to set up the equations governing the problem. The
Laplace transforms of the equations are formed and solved for the
Laplace transform VvV of the velocity. The velocity field v is
then obtained by evaluating the inverse Laplace transform.

In the case of run-up between parallel plates, V is given

by

=V cosh{[ps[ELgl]%?%} , (3)
s cosh{[ps/£f(s)]1* h}

where 2h is the distance between the plates, z is the dis-
tance of a generic point of the fluid from the mid-plane, o is
the density of the fluid, V is the velocity of the plates,
and ?(s) is the Laplace transform of f£f(t-t) . Vv 1is then

given by the inversion integral:




Y+1 _
v = 7%? f eStv(s,z)ds ’ (4)
Y-

where Yy 1s an arbitrary positive constant.

In [1] this integration was achieved by using the Residue
Theorem. The calculations were carried out in detail, and
curves showing the velocity profiles at various times were
plotted, for the cases when, in (2), N =1 and n, = 0
(Maxwellian fluid) and Ny # 0 . The expressions for v were
obtained in the form of an infinite series, the various terms in
which are contributed by the residues at the poles of the inte-
grand in (4).

It was found in [1] that if the fluid is Maxwellian, so that

f(t-t) may be written as

£(t-1) = Do (B-T)/A (s)

velocity discontinuities propagate into the fluid from the boun-
daries and are reflected back and forth. The speed with which
these discontinuities propagate is (n/Ap)k . As the discon-
tinuities propagate, they decay exponentially with decay constant
%(p/xn)* . In the case when the fluid has a single relaxation
time, but does not possess instantaneous elasticity, so thai

f(t-t) 1is given by
£(t-1) = ny8(t-1) + e (T, 6)

run-up is achieved by a process which is essentially diffusive

in character. However, the "steepness" of the front increases as
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Ny decreases and, in the limit n, = 0 , becomes a discon-
tinuity.
This interpretation of the velocity field is seen by ex-

pressing Vv in (3) in the form

v=Y kzo (-1)X{exp[- (2k+1-y)w] + exp[- (2k+1+y)w]} , (7)

where
w = nlos/EIT, y = 2/ . (8)

Then,
vev [ DM 00 el (9)

where Oy and ¥, are the inverse Laplace transforms of Ek

and ¥, defined by

k

exp[- (2k+1-y)w] ,

0j=

¢ (y,s) =
(10)

¥, (y,5) = & exp[- (2k+1+y)w]

In the case when the fluid is Maxwellian, °k and ?k
have been evaluated by using Cauchy's theorem with a modified
Bromwich contour [2]. The expressions for LN and ¥, were
obtained in the form of real quadratures. In the more general
cases when f(t-t) is given by (2) with n, = 0 or n, $0,
corresponding results have been obtained by using Cauchy's theorem
with a contour which consists of a strip (excluding the origin)

in the real half of the complex plane bounded by Res = y and




Res = 0 [3].

A procedure similar to that employed in [1] in the case of
run-up between parallel plates has been used to solve the prob-
lems of run-up aﬁd spin-up in an infinite circular cylinder. In
each case the expression for the velocity field is obtained as
an infinite series. As in the case of run-up between parallel
plates the velocity field may, in each case, be interpreted as the
superposition of disturbances which propagate from the cylindrical
boundary, come to a focus on the axis of the cylinder, then
diverge, and are reflected back from points on the opposite ends
of the diameters from which they originated.

The methods applied in [3] to the problem of run-up between
parallel plates can also be applied to these problems to give
alternative expressions for the velocity field. However, this
work has not, so far, been completed.

Work has also been carried out on the spin-up of a fluid
contained in the region between two parallel infinite discs. The
discs are given, at some instant, an angular velocity about a
common axis which is thereafter held constant. The constitutive
equation adopted for the fluid is a second-order equation of the
integral type and it is assumed that the velocities are suffic-
iently small so that the terms of higher degree than the second
in them can be neglected. It is also assumed that the relation of
the shear stress to the velocity gradient history, for simple
shearing flows, is Maxwellian. It has been found that angular
velocity discontinuities propagate into the fluid, similar to the

velocity of longitudinal run-up between parallel planes. Behind




these discontinuities a secondary flow takes place in axial
planes which is radially outwards just behind the front and in-
wards near the discs.

Work is also in progress on small Rossby number spin-up or
spin-down in a fully spun-up viscoelastic fluid contained between

parallel discs.

References

[1] Run-up and spin-up in a viscoelastic fluid. I, by J.Y.
Kazakia and R.S. Rivlin. Rheologica Acta 20, 111-127
(1981).

[2] Run-up and spin-up in a viscoelastic fluid. II, by R.S.
Rivlin. Rheologica Acta (in the press).

[3] Run-up and spin-up in a viscoelastic fluid. III, by R.S.

Rivlin. Rheologica Acta (in the press).







